III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 COMPUTER GRAPHICS
 (COMMON TO CSE, IT, CSSE, E.COMP.E)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Discuss the operation of raster scan system with a neat sketch.
b) Write about any one input device.
2.a) Derive the necessary equztions to generate bresenhaum line algorithm.
b) Write the bresenhaum line algorithm.
3.a) Give the transformation matrix to rotate a point about an arbitrary point.
b) Show that the transformation matrix for a reflection about the line $y=-x$ is equivalent to a reflection relative to the y-axis followed by a counterclockwise rotation of $90^{\circ} . \quad[8+8]$
4. With an example explain Cohen Sutherland linc clipping algoprithm.
5.a) Enumerate the properties of B spline curves.
b) Explin Gouraud shading.
6.a) Derive the transformation matrix for parallel projections.
b) Give the transformation matrix for rotation about X -axis in 3D.
7.a) Write about area subdivision algorithm for back face detection.
b) Enumerate due disadvantages of depth buffer algorithm.
8.a) Write about different motion specifications.
b) Write about different computer animation languages.
--00O00--

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 COMPUTER GRAPHICS
 (COMMON TO CSE, IT, CSSE, E.COMP.E)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Differentiate raster and random scan display systems.
b) Discuss about any one display device.
2. Derive the necessary equations required to generate circle algorithm.
3.a) Derive the transformation matrix to rotate a point about origin.
b) Give the transformation matrix to reflect a point about an arbitrary axis.
4. Explain cyrus-beck line clipping algorithm.
5.a) Enumerate the properties of Beizer curves.
b) List the properties to be considered for calculating the intensity to be rendered at a point on an object. Give the basic illumination model.
6.a) Give transformation matrix to rotate a point about X-axis.
b) With a block diagram, explain 3D viewing.
7.a) Explain depth-buffer algorithm for hiđden surface removal.
b) Write about octree method for back face detection.
8.a) What are the steps in the design of animation sequence.
b) List various motion specfications.

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 COMPUTER GRAPHICS
 (COMMON TO CSE, IT, CSSE, E.COMP.E)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Write about flat-panel displays.
b) Write about Digitizers.
2.a) Explain scan line polygon filling algorithm.
b) Differentiate scan line and seed fill algorithms for polygon filling.
3.a) Derive transformation matrix to rotate a point about origin.
b) Show that the transformation matrix for a reflection about the line $\mathrm{y}=\mathrm{x}$ is equivalent to a reflection relative to the x-axis followed by a counterclocwise rotation of 90°. [8+8]
4. Explain sudherland - hodgman algorith for polygon clipping with an example.
5.a) List the properties of B-splines.
b) Write about phong shading model.
6.a) Give the transformation matrix in 3D for the following:
i) To rotate a point about the y-axis by 45° in counter clock wise direction.
ii) Reflect a point about x -axis.
b) With a block diagram, write about 3D viewing.
7. Write about the following hidden surface methods
a) Depth sorting
b) BSP-bee.
8.a) What are the steps involved in the design of animation sequence.
b) Write about different computer animation languages.

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 COMPUTER GRAPHICS
 (COMMON TO CSE, IT, CSSE, E.COMP.E)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Discuss the operation of random scan system with a neat sketch.
b) Write about any one display device.
2.a) Differentiate scan-line and seed fill algorithms for polygon filling.
b) Explain scan-line polygon filling algorithm.
3.a) Derive the transformation matrix to rotate, a point about aribitrary point.
b) Give the transformation matrix for the following
i) To shaft left by 2 units and due to rotate by 45^{0} clockwise.
ii) To reflect w.r.t. $y=-x$ axis.
4. Explain Cohen - Sutherland algorithm for line clipping with an example.
5.a) Explain hermite method of curve generations.
b) Discuss the necessary factors contributing to intersity calculations. Give Basic illumination model.
6.a) Derive the transformation matrix for perspective transformation.
b) Give transformation matrix to rotate a point about Y-axis in counterclockwise direction.
7. Explain the following hidden surface removal algorithms.
i) Dept - Sorting.
ii) Octree.
8.a) What are key frames? Write about morping.
b) Explain some of motion specification for computer animation.

